
 

 

Castle Serial Link – Communication Protocol 

Castle Creations, Inc. 

23-Dec-2015 

Version 1.5 

 

 

 

 

 

 

 



1) Castle Serial Link Overview 

The Serial Link device will allow customers to communicate with Castle ESCs through the Castle Link Live 

protocol, which allows access to real time telemetry feedback from the ESC. The device is capable of 

communicating through several serial protocols (e.g. TTL Serial, I2C, SPI). The serial protocols allow the user to 

control the connected ESC's throttle level in real time while reading current operating conditions such as battery 

voltage and motor RPM. The device also has the ability to be controlled through an analog input, or can be used 

in a pass-through mode. The pass-through modes allow the Serial Link to receive the throttle signal from either 

an Analog or PPM input, and still allow a TTL Serial or I2C connection to pull real time data from the ESC.  

For more information about the Castle Link Live Protocol see: www.castlecreations.com/CastleLinkLive 

For the most up to date version of this document see: www.castlecreations.com/CastleSerialLink 

2) Device Pin-out 

  

(a) - Castle Serial Link Pin-out 

3) Pin Definitions 

Referencing image (a) above, the following table describes the purpose for each pin. 

Connection TTL Serial SPI I2C Analog PPM 

RX Port -GND Controller ground, tied internally to connector ground 

RX Port +BUS Power from controller’s internal BEC (if present). 

RX Port Signal Controller’s signal line 

Connector +BUS Unregulated Power Bus 

Connector +5V Regulated +5.0V supply 

Connector A TX CLK SDA Analog I/O A  

Connector B RX MISO SCL Analog I/O B  

Connector C n/a MOSI n/a Analog I/O C  

Connector D n/a NSS n/a Analog I/O D* PPM Input 

Connector -GND Ground  

     * Analog Channel D is recommended because it includes a small filter capacitor. 

(b) - Castle Serial Link Pin Definitions 

http://www.castlecreations.com/CastleLinkLive
http://www.castlecreations.com/CastleSerialLink
http://www.castlecreations.com/CastleSerialLink


4) Powering the Serial Link 

The Serial Link needs to be powered through the +BUS connection. ESC’s with internal BEC’s will power the 

device automatically, but an external supply will need to be attached if the connected ESC does not contain a 

BEC (See figure (c) below for a wiring diagram). 

 

(c) - Connecting a Castle HV ESC 

5) Adjusting Settings 

A Castle Link device can be used to change the settings of the Serial Link device. The Serial Link can be connected 

directly to a Castle Link device with the included wire adapter. 

  

(d) - Connecting the Serial Link and Castle Link 

6) TTL Serial Wiring Diagram 

A Generic FTDI USB to Serial converter can be used to connect the Serial Link to a PC. The Serial Link will 

communicate with either a 3.3V device of a 5.0V device. When wiring the devices make sure to cross the TX and 

RX signals, if this is not done the device will not communicate. 

 

(e) - Connecting the Serial Link and to a FTDI USB to Serial Device 



7) Communication Specifications 

The following table shows the available communication specifications and settings which can be configured 
using a Castle Link device. 

 Output Modes  
o Castle Link Live Protocol  

 Real Time Telemetry Feedback 
 1.0 ms to 2.0 ms throttle signal 
 100 Hz throttle refresh rate  

o PPM (Hobby Signal)  
 1.0 ms to 2.0 ms throttle signal  
 50, 100, 200, or 400 Hz throttle refresh rate 

 Input Modes  
o TTL Serial  

 Device ID (0 to 63)  
 Baud Rate (1200 to 230400 baud)  

o I2C  
 7bit I2C Slave Address (8 to 71)  
 I2C Frequency (10 kHz to 400 kHz)  

o SPI  
 Device ID (0 to 63) 
 SPI Frequency (125 kHz to 500 kHz)  

o Analog  
 Port (A, B, C, or D)  
 Range  

 Normal (0V to 5V -> 1.0ms to 2.0ms throttle)  
 Inverted (0V to 5V -> 2.0ms to 1.0ms throttle)  
 Lower Half (0V to 5V -> 1.0ms to 1.5ms throttle)  
 Upper Half (0V to 5V -> 1.5ms to 2.0ms throttle)  
 Lower Half Inverted (0V to 5V -> 1.5ms to 1.0ms throttle)  
 Upper Half Inverted (0V to 5V -> 2.0ms to 1.5ms throttle)  

 Pass-Through Modes* 
o TTL Serial (with Analog Input)  

 TTL Serial for real time telemetry feedback  
 Analog for throttle control  

o I2C (with Analog input)  
 I2C for real time telemetry feedback 
 Analog for throttle control  

o TTL Serial (with PPM Input)  
 TTL Serial for real time telemetry feedback 
 PPM for throttle control  

o I2C (with PPM Input)  
 I2C for real time telemetry feedback 
 PPM for throttle control  

* The pass-through modes allow the user to control the throttle level using a receiver or manual control using a potentiometer. These 

modes will allow the user to read the real time telemetry feedback from the ESC if Link Live mode is enabled. 



8) Register Description 

The three digital forms of communication (TTL Serial, SPI, and I2C) are implemented by reading / writing to a set 

of 16-bit registers.  The available registers are described in the tables below. Note: that the registers are divided 

into Read and Write registers. 

 Read Registers 

Register Name Description 

0 Voltage The controller’s input voltage 

1 Ripple The controller’s input voltage ripple 

2 Current The controller’s current draw 

3 Throttle The controller’s commanded throttle value 

4 Power The controller’s output throttle percentage 

5 Speed The motors electrical RPM 

6 Temp The controller’s temperature 

7 BEC Volt The BEC’s voltage 

8 BEC Current The BEC’s current load 

9 Raw NTC The raw NTC temperature value 

10 Raw Linear The raw linear temperature value 

25 Link Live Whether the Serial Link is in Link Live mode 

26 Fail Safe The E. Stop/RX Glitch fail safe output (0 = 1ms; 100 = 2ms) 

27 E. Stop If ‘1’ output is set to fail safe output 

28 Packet In The number of packets received by the serial link 

29 Packet Out The number of packets sent by the serial link 

30 Check Bad The number of received packets with invalid checksums 

31 Packet Bad The number of received packets with invalid data 

(f) - Read Register Descriptions 

 Write Registers 

Register Name Description Write 

128 Throttle The controller’s commanded throttle value 0 to 65535 

129 Fail Safe The E. Stop/RX Glitch fail safe output (0 = 1ms; 100 = 2ms) 0 to 100 

130 E. Stop If ‘1’ output is set to fail safe output 0 or 1 

131 Packet In The number of packets received by the serial link Sets to 0 

132 Packet Out The number of packets sent by the serial link Sets to 0 

133 Check Bad The number of received packets with invalid checksums Sets to 0 

134 Packet Bad The number of received packets with invalid data Sets to 0 

(g) - Write Register Descriptions 

* Unlisted register addresses are reserved for future use



9) Throttle Register 

The ESC can be controlled by writing to the throttle register.  The response of the speed control to writes to this 

register depends on the ESC current settings (adjustable via Castle Link).  The Serial Link controls the ESC in 

essentially the same manner that a receiver does.  Writing a 0 [0x0000] to this register would be the same as the 

receiver sending a 1.0ms pulse, OFF.  Writing 65535 [0xFFFF] to this register would be the same as the receiver 

sending a 2.0ms pulse, FULL THROTTLE.   

In most applications, a Fixed Throttle mode is suggested.  This will result in a consistent ESC response to register 

values.  However, all throttle modes work, including Airplane Auto-Calibration and the Governor modes.  If a 

governed RPM is desired, governor-low or governor-high mode is suggested. 

When the Serial Link is set to one of the pass through combination modes (e.g. TTL Serial (with Analog), I2C (with 

PPM)…) the communication protocol will not have control over the throttle register. Note that it is possible to 

set the Emergency Stop register which will set the throttle output to the Fail Safe register’s value. 

10) Safety Features 

The serial link device has multiple safety features which can be used, the features are outlined below. 

 Emergency Stop 

The Serial Link has a built in emergency stop override which can be set in all modes. If the E. Stop 

register is set to ‘1’ then the Serial Link will ignore the throttle register and transmit the contents of the 

Fail Safe register. The Fail Safe register can be set to values between 0 and 100 inclusive, where 0 

represents 1.0ms and 100 represents 2.0ms. The E. Stop feature was added so that the Analog and PPM 

combination modes could be disabled by the TTL Serial /I2C protocol. The default value of the Fail Safe 

register is 1.0ms. The value should be set to 50 (1.5ms) if reversible/car esc’s are used with the Serial 

Link. The Red LED will turn on when the Fail Safe output is active. 

 Throttle Glitch Detection 

If the Serial Link is in one of the PPM combination modes and the PPM throttle signal is lost for more 

than 1 second then the Serial Link will go into the throttle glitch state. While in the throttle glitch state 

the Serial Link will output the Fail Safe registers value. The Red LED will turn on when in the throttle 

glitch state. Once the input returns the throttle output will change back to the PPM input’s value and 

the Red LED will turn off.  

 Communication Watchdog Timer 

The Communication Watchdog Timer is a safety feature that will set the throttle output to the Fail Safe 

value if no communication packets are received in a programmable number of seconds. This value can 

be set to 0 to disable the Communication Watchdog Timer, or can be set from 1 to 255 seconds. The Red 

LED will turn on when the Fail Safe output is active. 



11) Conversion 

The following table lists the conversion factors necessary to turn the register values into an actual value. 

Data Item Scale Units Max 
Value Voltage 20.0 Volts 100 

Ripple Voltage 4.0 Volts 20 

Current 50.0 Amps 250 

Throttle 1.0 Milliseconds 2.5 

Output Power 0.2502 Percent 1 

RPM 20,416.66 Electrical RPM 100,000 

BEC Voltage 4.0 Volts 20 

BEC Current 4.0 Amps 20 

Temperature 30.0 Degrees C 150 

Raw NTC Temperature* 63.8125 Units** 255 

Raw Linear Temperature* 30.0 Degrees C 150 

(g) - Conversion Factors 

The value is computed by the following equation: 

Result = Register / 2042 * Scale 

For example, if the Voltage register holds a value of 4084, the actual voltage is: 

Voltage = 4084 / 2042 * 20 = 40.0V  

* The Serial Link calculates the degrees Celsius value for you using a lookup table, but if more accuracy is needed 

it is possible to read the raw temperature sensor values from the esc. Note: Castle esc’s contain either a Linear 

or NTC thermistor but never both. In order to detect which temperature sensor is used compare the Raw NTC 

and the Raw Linear, the register with the larger value is used. 

** It is possible to read the raw output from the NTC thermistor, but this requires additional processing to find 

the degrees Celsius value. Use the formula below to find the temperature in Celsius. 

Degrees C = ( 1 / ( ln( value * R2 / ( 255 - value ) / R0 ) / B + 1 / 298 ) ) - 273 

      where R0 = 1000; R2 = 10200; B = 3455 

 



12) Communication Protocols 

 TTL Serial 

TTL Serial communication with the Serial Link takes the form of reading and writing to a set of 16-bit 

registers.  Every TTL Serial command is 5 bytes long and every response is 3 bytes long.  See figure (g). 

The first byte of the command contains a start bit and the Device ID of the Serial Link to communicate 

with. Device ID’s can range from 0 to 63, allowing multiple Serial Links on the same bus. The second byte 

specifies the register number; note that there are separate addresses for reading and writing.  The 

remaining bytes contain the data to write to the register, the Command Data is ignored if it is a read 

address, and a checksum to ensure that the transfer was not corrupted. 

The three byte response will return the value of the register specified by the command.  If the command 

pointed to an invalid register or the command was corrupted, 0xFFFF will be returned to indicate an 

error. The response will also include a checksum for the Response Data so that it can be verified. 

At any time you can write a series of at least 5 0x00 bytes to clear the command buffer.  This is generally 

a good idea upon initialization to ensure that the controller is in synch with the ESC. 

The checksum is a modular sum.  Correctly compute it as follows: 

     Checksum = 0 - (Byte 0 + Byte 1 + Byte 2 + Byte 3) 

If the checksum is correct, the result of adding the bytes in the command or response packet together 

will be 0x00 (ignoring overflows). The response checksum can be verified by adding the Response Data 

bytes and the response checksum, if valid they will total to 0x00 (ignoring overflows). 

  
(h) - TTL Serial Command / Response Protocol 



 SPI 

SPI communication with the Serial Link takes the form of reading and writing to a set of 16-bit registers.  

Every SPI command is 5 bytes long and every response is 3 bytes long.  See figure (h). 

The first byte of the command contains a start bit and the Device ID of the Serial Link to communicate 

with. Device ID’s can range from 0 to 63, allowing multiple Serial Links on the same bus. The second byte 

specifies the register number; note that there are separate addresses for reading and writing.  The 

remaining bytes contain the data to write to the register, the Command Data is ignored if it is a read 

address, and a checksum to ensure that the transfer was not corrupted. 

Since SPI is synchronous the master will have to write at least 5 bytes in order to receive the three byte 

response which will return the value of the register specified by the command.  If the command pointed 

to an invalid register or the command was corrupted, 0xFFFF will be returned to indicate an error. The 

easiest way to accomplish reading and writing in SPI is to use the next transmission packet to receive the 

previous packets response. The response will also include a checksum for the Response Data so that it 

can be verified. 

At any time you can write a series of at least 5 0x00 bytes to clear the command buffer.  This is generally 

a good idea upon initialization to ensure that the controller is in synch with the ESC. 

The checksum is a modular sum.  Correctly compute it as follows: 

     Checksum = 0 - (Byte 0 + Byte 1 + Byte 2 + Byte 3) 

If the checksum is correct, the result of adding the bytes in the command or response packet together 

will be 0x00 (ignoring overflows). The response checksum can be verified by adding the Response Data 

bytes and the response checksum, if valid they will total to 0x00 (ignoring overflows). 

 
 (i) - SPI Command / Response Protocol 



 I2C 

I2C communication with the Serial Link takes the form of reading and writing to a set of 16-bit registers.  

Every I2C command is 5 bytes long and every response is 3 bytes long.  See figure (i). 

The first byte of the write command specifies the 7 bit I2C Slave Address of the Serial Link to 

communicate with. Valid Addresses can range from 8 to 71, allowing multiple Serial Links on the same 

bus. The second byte specifies the register number and the remaining bytes contain the data to write to 

the register, note that there are separate addresses for reading and writing. The last byte is a checksum 

to ensure that the transfer was not corrupted. 

The response will need to be requested by sending the 7 bit I2C Slave Address with a 1 to indicate a Read 

command. The response will then return the value of the register specified by the command.  If the 

command pointed to an invalid register or the command was corrupted, 0xFFFF will be returned to 

indicate an error. The response will also include a checksum for the Response Data so that it can be 

verified. 

The checksum is a modular sum.  Correctly compute it as follows: 

     Checksum = 0 - (Byte 0 + Byte 1 + Byte 2 + Byte 3) 

If the checksum is correct, the result of adding the bytes in the command or response packet together 

will be 0x00 (ignoring overflows). The response checksum can be verified by adding the Response Data 

bytes and the response checksum, if valid they will total to 0x00 (ignoring overflows). 

 

 (j) - I2C Command / Response Protocol 



13) Additional Communication Modes 

 Analog Input 

The Serial Link also has the capability to control the esc’s throttle using an Analog input on one of the 

inputs. The available channels are labeled A, B C, and D, channel D is recommended because it includes 

a small filter capacitor. Voltages from 0V to 5V are accepted and will be converted to a throttle output 

depending on the Analog Range Select setting, see figure (j). 

Type Range 

Normal 0V to 5V -> 0% to 100% throttle 

Inverted 0V to 5V -> 100% to 0% throttle 

Lower Half 0V to 5V -> 0% to 50% throttle 

Upper Half 0V to 5V -> 50% to 100% throttle 

Inverted Lower Half 0V to 5V -> 50% to 0% throttle 

Inverted Upper Half 0V to 5V -> 100% to 50% throttle 

(k) - Analog Range Options 

 TTL Serial/I2C (with Analog Input) 

These combination modes allow external control through an Analog input, only channel D can be used, 

and also allow real time data feedback using either TTL Serial or I2C. Note that when in these modes, the 

communication protocol does not have write access to the Throttle register. If needed an Emergency 

Stop register was added which can be set by the communication protocol. If set the Emergency Stop 

register will override the Analog input and use the value set in the Fail Safe register. 

Look at the headings above for details into how the individual modes work. 

 TTL Serial/I2C (with PPM Input) 

These combination modes allow external control through a PPM input on channel D and also allow real 

time data feedback using either TTL Serial or I2C. Note that when in these modes, the communication 

protocol does not have write access to the Throttle register. If needed an Emergency Stop register was 

added which can be set by the communication protocol. If set the Emergency Stop register will override 

the Analog input and use the value set in the Fail Safe register. 

The PPM input modes allow the Serial Link to pass through the incoming signal from a receiver and then 

output the same signal to the esc but with Link Live communication enabled. This allows an external 

device to pull real time data from a standard human controlled receiver/esc pair. 

The PPM data accepts values from 1ms to 2ms anything above or below these thresholds will be clipped. 

If at any point the PPM input quits for more than 1 second the Serial Link will go into the RX Glitch State 

and will output the throttle value in the Fail Safe register. 

Look at the headings above for details into how the individual modes work. 



Castle Serial Link – Communication Protocol 

Subject to change at any time without notice or warning. 

 

Revision Log: 

1.0 – 19-Oct-2010: 

     Initial Version 

1.1 – 12-Aug-2011: 

     Changed register numbers for Packet Count registers 

1.2 – 24-Jan-2013: 

     Updated/restructured to support multiple communication modes 

1.3 – 16-Apr-2013: 

     Updated for production release 

1.4 – 17-Jun-2015: 

     Changed RS232 to TTL Serial 

1.5 – 23-Dec-2015: 

     Added a section on FTDI USB to Serial device wiring 

 

 

 


